

The Kelkar Education Trust's

V. G. Vaze College of Arts, Science and Commerce (Autonomous) - Affiliated to University of Mumbai

(Re Accredited by NAAC with Grade A)

Revised Syllabus for FYBSc Based on NEP-2020 Guidelines

Program: B.Sc.

Undergraduate Science Program Outcomes:

PO1	Academic expertise: Exhibit knowledge of the discipline, Identify and explain seminal pieces of work in the area, Conduct guided academic inquiries in various areas of interest in the chosen discipline.
PO2	Foundational Understanding: Develop a foundational understanding of core
	scientific principles and theories across various disciplines of science.
PO3	Analytical Skills: Develop analytical and problem-solving skills to critically analyse
	scientific problems and apply scientific methodologies.
PO4	Global Perspective: Gain a global perspective by understanding diverse scientific
	issues and incorporating ethical considerations in scientific practices.
PO5	Research Awareness: Gain awareness of research methodologies and techniques,
	preparing for future research endeavours.
PO6	Holistic Development: Experience holistic development by embracing values of
	humanism, empathy, and social responsibility in scientific pursuits.
PO7	Continuous Learning: Develop a commitment to lifelong learning and staying
	updated with advancements in science.
PO8	Ethical Practices: Understand and adhere to ethical standards in scientific research
	and practice.

Programme Specific Outcomes (PSOs) for B.Sc. in Botany

Sr	A student completing B.Sc. in Botany will be able to:
No.	
PSO1	Understand basic concepts and relationships of Classical Botany, and Advanced
	areas of Botany Such as Physiology and Molecular Biology, Cytogenetic and
	Ecology and Biodiversity etc.
PSO2	Understand the applications of Biological Sciences: Medicinal Botany, Plant
	Biotechnology, Bioinformatics, Horticulture, Forestry Biostatistics, Biochemistry,
	Environmental Sciences, Herbal Cosmetology, Pharmacognosy etc.
PSO3	Perform procedures as per laboratory standards in areas of Plant Sciences
PSO4	Appraise the importance of sustainable technology and apply scientific knowledge
	for conservation of nature and natural resources
PSO5	Enhance the skillset required for preparing reports, presentation, model making and
	entrepreneurship

Course: BOTANY Semester I

To Be Implemented From Academic Year 2024-25 F.Y.B.Sc. (Botany) Semester: I Major/Minor Course-I Course Title: PLANT DIVERSITY I

Course Name: PLANT DIVERSITY I

Course code: VGVUSMBO101

Credits: 04

Teaching Scheme (Hrs/Week)			g e ek)	Continuous Internal Assessment (CIA)40 marks					End Semester Examination	Total
L	T	Р	C	CIA- 1	CIA- 2	CIA- 3	CIA- 4	Lab	Written	
2	-	2	4	20	15	05		-	60	100
Max. Time, End Semester Exam (Theory) -2Hrs.										

Course Objectives:

- To understand the life cycle of representative Algae, Fungi and Bryophytes species.
- To understand the phenomenon of inheritance of genetic traits.
- To recognize the importance of Ecosystem, biotic and abiotic factors of various ecosystems, interactions taking place in the ecosystem

Course Outcomes :

After the successful completion of the course, Learners will able to:

CO1- Develop critical understanding of the salient features, their life cycle pattern.

CO2- know more about the fascinating world of plants which will enhancetheir

interest for the subject.

Unit I	ALGAE, FUNGI, BRYOPHYTES	10 Lectures
1.1	Algae: Systematic Position, Life history and economic importance	
	of Spirogyra and Nostoc	
1.2	Fungi : Systematic Position, Life history and economic importance	
	of Rhizopus	
1.3	Bryophyte: Systematic Position, Life history and economic	
	importance of <i>Riccia</i>	
Unit II	MENDELIAN GENETICS	10 Lectures
2.1	Phenotype/Genotype, Mendelian Genetics- monohybrid, dihybrid;	
	test cross; back cross ratios.	
2.2	Epistatic and Non-epistatic interactions; multiple alleles	
Unit III	ECOLOGY	10 Lectures
3.1	Types of ecosystems:	
	i. Aquatic including biotic and abiotic factors (Freshwater-	
	Lentic, Lotic, Marine ecosystem – Ocean, Estuarine)	
	ii. Terrestrial including biotic and abiotic factors (Forest,	
	Grassland, Desert, Cropland)	
3.2	Types of Ecological pyramids : Pyramid of Biomass,	
	Pyramid of number, Pyramid of Energy) and their	
	significance	

References:

- 1. Sharma, O.P. (1986) Textbook of Algae.
- 2. Pandey, B. P. (1994) Textbook of Botany Algae.
- 3. Vashista, B. R. (1995) Botany for degree students-Algae.
- 4. Sharma, O.P. (1989): Textbook of Fungi.
- 5. Vashista, B. R. (1995) Botany for degree students-Fungi.
- 6. Smith, G. M. (1955): Cryptogamic Botany Vol. II.
- 7. Vashista, B.R. (1996): Botany for degree students -Bryophytes.
- 8. Chopra, R. N. and P. K. Kumar (1988): Biology of Bryophytes.
- 9. C. B. Powar 1992: Cell Biology; Himalaya Publishing House.
- 10. Swanson, C. P. 1968. Cytology and Cytogenetics. Macmillan and Co. Ltd., London.
- Sharma, A. K. and Sharma, A. 1980. Chromosome techniques- Theory and practice. Butterworth and Co. (Publishers) Ltd., London.
- 12. Karp Gerald. 2015 Cell and Molecular Biology. Global Publications.
- 13. Russell P. J. 1998. Genetics (Fifth edition) Benjamin / Cummings Publishing

Company Canada

- 14. Ecology workbook R. Misra
- 15. Plant Ecology Weaver and Clemests
- 16. Principles of Environmental Biology P.K. Nair, 1979
- 17. Fundamentals of Ecology E.P. Odum, 1996
- 18. Ecology E. P. Odum.
- 19. Ecology and Environment P. D. Sharma, Rastogi publications, Meerut
- 20. Concept of Ecology (Environmental Biology) P. S. Verma, V. K. Agarwal, S. Chand and Company Ltd. New Delhi.
- 21. Golatkar V.V., Patel B.B., Tutakne N.S. A New Course in Botany, FYBSc, Semester I & II, Sheth Publications, Mumbai.
- 22. Botany-II Form and Function I, F.Y.B.Sc., Semester I. Tech-Max Publications, Pune.

PRACTICALS BASED ON PLANT DIVERSITY I

Course code: VGVUSPBO101

Credits:02

Course Objectives:

The Practical intends to:

• Understand the, general and reproductive characters of *Spirogyra*, *Nostoc*, *Rhizopus and Riccia*

Course outcome:

After successful completion of practicals, the learner will be able

1. To identify *Spirogyra, Nostoc, Rhizopus and Riccia* with respect to morphological and anatomical features

Sr. No.	Description
1.	Study of stages in the life cycle of <i>Nostoc</i> from fresh/ preserved material and permanent slides
2.	Study of stages in the life cycle of <i>Spirogyra</i> from fresh/ preserved material and permanent slides.
3.	Study of stages in the life cycle of <i>Rhizopus</i> from fresh/ preserved material and permanent slides.
4.	Study of stages in the life cycle of <i>Riccia</i> from fresh/ preserved material with the help of permanent slides.
5.	Examining various stages of mitosis in root tip cells (Allium)
6.	Study of Mendelian Monohybrid and Dihybrid ratio
7.	Calculation of mean, median and mode.
8.	Calculation of standard deviation.
9.	Frequency distribution, graphical representation of data- frequency polygon, Histogram, pie chart.
10.	Study of Karyoptypes: Human: Normal male and female, Allium cepa .

The Kelkar Education Trust's

V. G. Vaze College of Arts, Science and Commerce (Autonomous) - Affiliated to University of Mumbai

(Re Accredited By NAAC with Grade A)

Revised Syllabus for FYBSc Based on NEP-2020 Guidelines

> Program: B.Sc. Course: BOTANY Semester II

To Be Implemented From Academic Year 2024-25 F.Y.B.Sc (Botany) Semester: II

Major/ Minor Course-II Course Title: PLANT DIVERSITY II

Course Name: PLANT DIVERSITY II Credits:04

Course Code: VGVUSMBO201

Teaching Scheme (Hrs/Week)			g e ek)	Continuous Internal Assessment (CIA) 40 marks					End Semester Examination	Total
L	T	Р	C	CIA- 1	CIA- 2	CIA- 3	CIA- 4	Lab	Writ ten	
2	-	2	4	20	15	05		-	60	100
Max. Time, End Semester Exam (Theory) -2Hrs.										

Соі	arse Objectives
1.	To understand the classification, general characters of the classes of Pteridophyta.
2.	To understand morphology, anatomy, structure and life cycle of respective groups of plants.
3.	To understand morphology of Flower, Inflorescence and variation.
4.	To learn families on the basis of vegetative and floral characters and understand variation in these families.

Course	e Outcomes: After the successful completion of the course, Learners will able to
CO1	To develop critical understanding on the salient features, life cycle pattern and identify plant systems.
CO2	To know economic importance of various species of respective group ofPlants
CO3	To know more about the fascinating world of plants which will enhance their interest for the subject.
CO4	To develop critical understanding on family's identification according to Bentham and Hookers system of classification and economic importance of plants

PLANT DIVERSITY II

	PTERIDOPHYTES, GYMNOSPERMS, ANGIOSPERMS AND	10
Unit I	ANATOMY	Lectures
1.1	Pteridophytes: Systematic Position, Life history and economic	
	importance of Adiantum.	
1.2	Gymnosperms: Systematic Position. Life history and economic	
	importance of <i>Cycas</i>	
1.3	Angiosperms: Morphology of flower – All Parts of Flower, Types of	
	Inflorescence-Racemose, Cymose & their types,	
1.4	Anatomy: Simple and Complex Tissues	
Unit II	CELL BIOLOGY	10
		Lectures
2.1	Cell :Structure of Prokaryotic and Eukaryotic Cell	
	General structure of plant cell: Ultra structure of Cell wall	
	and its functions	
2.2	Ultra structure of Plasma membrane (lipid bilayer structure,	
	fluid mosaic model) and its functions with respect to	
	transport of ions across cell membranes, active and passive	
	transport, importance of carriers, channels and pumps	
2.3	Ultrastructure of chloroplast and its functions	
Unit III	PHVSIOI OCV	10
	THISIOLOGI	Lectures
3.1	Photosynthesis: Light reactions, Photolysis of water,	
	Photophosphorylation (cyclic and non-cyclic),	
3.2	Carbon fixation phase (C3, C4 and CAM pathways)	

Reference

- 1. Rashid, A. (1978) An introduction to pteridophytes
- 2. Vashishta, B.R. (1996) Botany for degree students Pteridophytes
- 3. Chamberlein, C.J. (1966) Gymnosperms, Structure and Evolution
- 4. Ramanujan, C.G.K. (1979) Indian Gymnosperms in Time and Space
- 5. Vashistha, P.C. (1976) The Gymnosperms
- 6. ATextbook of Botany: Angiosperms Taxonomy, Anatomy, Embryology and Economic Botany -Publisher: S Chand & Co Ltd
- 7. Sharma, O. P. 1993. Plant Taxonomy. Tata McGraw Hill Publishing Co. Ltd.; NewDelhi
- 8. Sambamurty, A. V. S. S. 2005. Taxonomy of Angiosperms. I. K. International Pvt.Ltd., New Delhi.
- 9. A Cutter, E G 1971 Plant Anatomy
- 10. Emmes, E J. and M C Danials, 1947: An introduction to plant anatomy.
- 11. Easau, K. 1962: Plant anatomy –anatomy of seed plants.
- 12. Fahn, A.1969: Secretary Tissue system

13. Foster, A S 1942: Practical plant anatomy

- 14. Masueth, J D. 1936 : Plant anatomy
- 15. Metcalfe, C R and L Chalk, 1950: Anatomy of the dicotyledons
- 16. Noggle, G.R. and Fritz, G. J. (1976): Introductory Plant Physiology
- 17. Salisbury, F. B. and Ross, C.W.(1992): Plant Physiology IV ed.
- 18. Taiz, L. and Ziegler, F. (1998): The Plant Physiolog
- 19. Govindjee, H. (1982): Photosynthesis Vol. I & II.
- 20. Hopkins, W. C. (1995): Introduction to Plant Physiology

Semester II Practical

Course code: VGVUSPBO201

(CREDITS-02)

Course (Practical) Objectives – The Practical intends to

1. To understand the, general and reproductive characters of *Adiantum* and *Cycas*

2. Understand and observe Morphology of Flowers and Inflorescence using Plant Specimen

3. To learn the difference between families of Angiosperms on the basis of morphological characters.

Course (Practical) outcomes: After successful completion of practicals, the learner will be able to

CO1: Identification of *Adiantum, Cycas* on the basis of morphological and anatomical structure.

CO2: Will be able to understand morphology of Flower and inflorescence to classify the families.

CO3: Will be able to learn classification of families according to Bentham and Hooker's system of classification.

Practicals based on Plant Diversity I

- 1. Study of stages in the life cycle of *Adiantum* from fresh/ preserved material and permanent slides.
- 2. Study of stages in the life cycle of Cycas from fresh/ preserved material and permanent slides
- 3. Study of Morphology of Flowers using fresh/ preserved material
- 4. Study of Inflorescence from fresh/ preserved material
- 5. Study of Angiosperm families:Malvaceae, Amaryllidaceae.

Sr. No.	Description
1.	 i. Study of stages in the life cycle of <i>Adiantum</i>: ii. T.S. of rachis. iii. T.S. of the pinna of <i>Adiantum</i> passing through sorus.
3.	 Study of stages in the life cycle of <i>Cycas:</i> i. T.S of leaflet (<i>Cycas</i> pinna), ii. Megasporophyll, Microsporophyll, coralloid root, microspore, L.S. of ovule of <i>Cycas</i> – all specimens to be shown.

4.	Identification of cell organelles						
5.	Study of mitosis in onion root tips						
6.	Gram's staining Technique						
7.	Study of Angiosperm families :Malvaceae and Amaryllidaceae						
8.	Primary structure of dicot and monocot root.						
9.	Primary structure of dicot and monocot stem						
10.	Study of dicot and monocot stomata						
11.	 Epidermal outgrowths: with the help of mountings Unicellular: Gossypium(Cotton) /Radish Multicellular: Lantana/Sunflower Glandular: Drosera and Stinging: Urtica- only identification with the help of permanent slides. Peltate: Thespesia Stellate: Erythrina/Sida/Solanum/Helecteris vi. T-shaped: Avicennia 						
12.	Study of types of Vascular bundles						
13.	Study of effect of osmosis on plant cells						
14.	Study of Hill's Reaction (Demonstration)						

Program: F. Y. B. Sc	Semester I/II
Course: Botany	Course Code:
(Internal Assessment)	Marks: 40
1. Class Test: (Based on Theory Unit 1, 2 and 3)	15 marks
2. Internal Assignment:	15 marks
3. Attendance/Class Participation and Overall conduct	10 Marks

Semester I/II (Plant Diversity I)	(Internal Class Test Paper Pattern)
Duration: 30 mins	Marks: 15
Q. 1. Fill in the blanks:	05 marks
Q. 2. Answer the following (Any two out of three question	10 marks
Semester I/II (Plant Diversity) Paper I	(Theory Paper Pattern)
Duration: 02 hrs	Marks: 60
Q1A. Answer the following (Unit 1)	
1.	7 Marks
Or	
2.	7 Marks
Q1B. Answer any two of the following	8 Marks
1.	
2.	
3.	
Q2A. Answer the following (Unit 2)	
1.	7 Marks
Or	
2.	7 Marks
Q2B. Answer any two of the following	8 Marks
1.	
2.	
3.	
Q3A. Answer the following (Unit 3)	
1.	7 Marks
Or	
2.	7 Marks
Q3B. Answer any two of the following	8 Marks
1.	
2.	
3.	
Q4. Answer the following (All questions compulsory)	15 Marks
1.	
2.	
3	

Syllab	Syllabus Prepared by:	
1.	Prof. (Dr.) Ajit Kengar: Member, Syllabus Committee	
	Head, Dept. of Botany,	
	KET's V.G. Vaze College (Autonomous), Mulund (East), Mumbai.	
2.	Dr. Supriya Thale: Member, Syllabus Committee	
	Assistant. Professor,	
	KET's V.G. Vaze College (Autonomous), Mulund (East), Mumbai.	
3.	Mr. Jatin Vaity: Member, Syllabus Committee	
	Assistant Professor,	
	KET's V.G. Vaze College (Autonomous), Mulund (East), Mumbal.	
4.	Dr. Rajni Shirsat: Member, Syllabus Committee	
	Assistant. Professor,	
	KET's V.G. Vaze College (Autonomous), Mulund (East), Mumbai.	
5.	Ms. Siddhi Baskaware: Member, Syllabus Committee	
	Assistant Professor,	
	KET's V.G. Vaze College (Autonomous), Mulund (East), Mumbai.	
6.	Ms. Nupoor Telawane: Member, Syllabus Committee	
	Assistant Professor,	
	KET's V.G. Vaze College (Autonomous), Mulund (East), Mumbai.	
7.	Dr. Jayshri Jagtap: Member, Syllabus Committee	
	Assistant Protessor,	
	KET's V.G. Vaze College (Autonomous), Mulund (East), Mumbai.	